Performance Enhancement of Electric Vehicle with Super capacitor

Sarwesh Darshan and Sunil Kumar Pandey

Department of Electrical and Electronics Engineering, MAIT, Sector-22, Rohini, Delhi-110086

Abstract: This paper investigates the benefits of integrating super capacitor with battery based propulsion system to reduce the overall transient losses and efficiency improvements of electrical vehicles. The super capacitor provides the inrush starting current of the electric vehicle (EV) due to its high rate of discharge current characteristics, and thus, inrush current from the battery is avoided. This results minimum voltage drop due to battery internal resistance across battery terminal while electric vehicle accelerates. The EV motor dynamic torque is increased which is especially useful for racing cars. The regenerative braking is utilized to charge the battery while EV decelerates during brakes are applied. This also enhances the battery efficiency and makes the battery long lasting.

1. INTRODUCTION

The global warming concerns, limited stock of exhaustible fuels and embargo compels to adopt the electric vehicles. This has revolutionized the mobility industry. The EV market is growing exponentially and people are always comparing the performance of EV with fossil fuel based automobiles [1]. The overall efficiency of electric vehicles are 75-80% and gasoline engine are 30-35% [2]. The racing car industries demand high performance and brilliancy of engineering to achieve the goals. The current scenario in the field of electric vehicles and powertrain has observed the emergence of utilizing battery and super capacitor in hybrid model. The basic structure includes the parallel operation of battery and super capacitor, which are connected at DC bus and utilizes a DC bus controller to deliver power.

The starting current of the electric motors is very high till it reaches to base speed [3], this causes the bandwidth of transient state to expand causing the battery to provide high current for longer time period. Thus, battery life reduces due to overheating caused by battery internal resistance [4]. The motor dynamic torque is limited due to insufficient battery current [5], and the battery high discharge current decreases the power backup of battery and range [6]. These shortcoming are overcome by utilizing the super capacitors. The properties of charging and discharging of super capacitor at high rate is used to deliver the required current surge at the transient state of the circuit [7]. Moreover, the super capacitor high power density and short charging and discharging time capability meets the dynamic current demand of electric vehicles without loss of energy in internal resistance beside facilitates rapid energy recovery associated with regenerative braking and rapid energy dissipation associated with sudden torque requirements [8]. The Charging time of capacitor is 5RC and discharging time is RC where R is active part of load impedance [9].

This paper investigates the use of super capacitor in addition to battery to feed the electric vehicle, and thus, to improve the dynamic torque performance of the vehicle. Moreover, the electric vehicles are prone to sudden jerks and continuous vibrations which increases the chances of internal damage. Thus, a flexible polymer based double layered super capacitor is utilized in this work.

2. PROPOSED PROPULSION SYSTEM BLOCK DIAGRAM

The block diagram of the proposed propulsion system is depicted in Fig.1. This block diagram includes battery charger, battery, super capacitor charger, super capacitor, Induction Motor controller, Regenerative braking system and the induction motors (M1 and M2). The regenerative braking system converts the kinetic energy of vehicle to charge the battery and thus, the overall efficiency of vehicle is increased. Typically, a C5 rating battery is used. The efficiency drops during transient state of vehicle and optimum level of performance is not achieved. The higher C rating battery increases the cost of vehicle. The Super capacitor is used to achieve similar performance to that of higher C rating battery, which results in significant decrease of cost, weight and power loss.

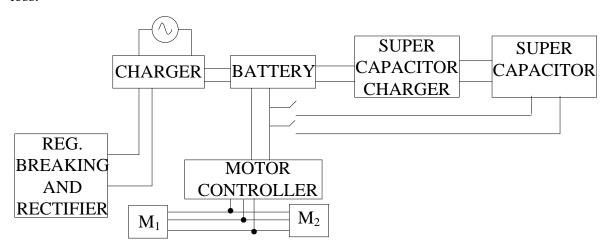


Fig.1 Block diagram of propulsion system

3. METHODOLOGY

The torque produced by induction motor is given [5] as,

$$T_m = \frac{3P}{2} \times \frac{L_m^2}{L_m + L_R} i_{sd} \times i_{sq} \tag{1}$$

Thus, torque produced by motor is proportional to the product of currents. The motor requires higher torque at the time of initiation of motion and acceleration. Which results in higher discharge

rate of battery and therefore rapid decrease of battery efficiency. This is clear from the plot of battery discharge rate and efficiency for various C rate battery as depicted below,

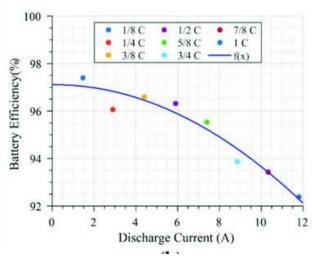


Fig. 2 Discharge current and battery efficiency

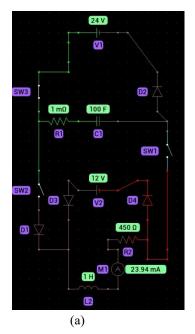
The super capacitor is integrated to the battery to overcome these draw backs. The charging and discharging equations of capacitor are given as,

$$i_c = i_0 (1 - e^{-t/T}) \tag{2}$$

$$i_d = (\frac{i_0}{T})e^{-t/T} \tag{3}$$

The super capacitor is simple capacitor but have very high capacitance which make it effective for storing energy in form of electric field. The capacitance of super capacitor is increased by

- a) Use of graphene allotrope of carbon which is conducting in nature so that equivalent distance (d) is reduced and capacitance is increased.
- b) Use of activated carbon which increases the surface area (A) and increases capacitance.
- c) Use of dielectric material of high dielectric constant so that relative permittivity(εr)is increased and capacitance is increased


The energy stored by super capacitor is given as,

$$E = \frac{1}{2} \times C \times V^2 \tag{4}$$

4. CIRCUIT DIAGRAM AND IMPLEMENTATION

The circuit diagrams of electric vehicle propulsion system is depicted in Figs. 3(a)-(b). Inductor and resistor connected in series represents the motor parameters connected to 12 V battery supply.

Fig. 3(a) illustrates charging of the super capacitor to its full potential while switch SW1 and SW2 are open and main motor circuit (SW3) is closed. The constant current of 23.94mA flows, and the super capacitor charges to 24V. This is achieved by controlling the operation of switch SW3. The open state of switch SW1 and SW2 prevents leakage current of main motor circuit. Fig. 3(b) depicts that super capacitor is fully charged and SW3 is open while SW1 and SW2 are closed which is creating the pathway through the motor for the discharge current of super capacitor and the current has reached the value of 50.69mA. The switch SW1 and SW2 are the boost converter switches. The unipolar voltage switching concept is used to control the switching of the switches. Diode provides restriction in backward flow of current or shorting of capacitor through the battery. The MATLAB code to realize the electric vehicle is given in Appendix.

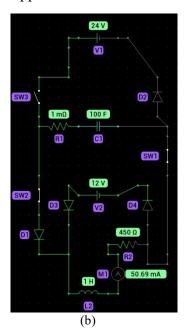


Fig.3 Circuit diagram of electric vehicle propulsion system (a) Switch SW1, SW2 open and SW3 close (b) SW1, SW2 close and SW3 open

5. RESULTS AND DISCUSSIONS

Fig.4 depicts the plot for variation of motor current, motor torque and motor speed with respect to time in both the conditions while super capacitor is integrated with battery and super capacitor is not integrated with battery. It is observed that the torque produced by motor while super capacitor is integrated during transient conditions is much more than the super capacitor is not integrated to battery. Moreover, the stress on the battery, especially, during transient conditions is reduced because major part of the motor current is fed by the super capacitor. The quick acceleration is also observed while the super capacitor is integrated.

6. CONCLUSION

The performance of the electric vehicle integrated with super capacitor is investigated. The super capacitor provided the inrush current required by the electric vehicle motor during dynamic conditions such as during initiation of motion and acceleration. Thus, rapid increment of electric vehicle torque is achieved which results in quick acceleration of vehicle. Furthermore, the control circuit and super capacitor add on to the total cost. The implementation of more effective control unit is still in research.

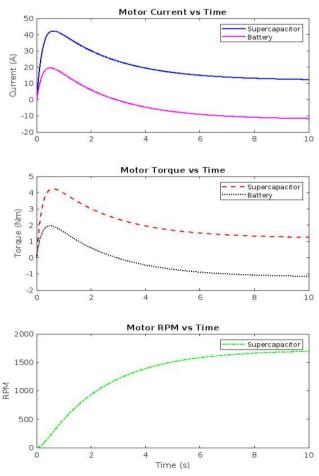


Fig.4 Plot of motor current vs time, motor torque vs time and motor speed vs time

REFRENCES

[1] M. K. Loganathan, C. M. Tan, S. Sultana, I. -Y. L. Hsieh, L. A. Kumaraswamidhas and R. N. Rai, "Parametric performance analysis of battery operated electric vehicle," *International Conference on Sustainable Energy and Future Electric Transportation (SEFET)*, Hyderabad, pp.1-6, 2021. [2] Aiman Albatayneh, Mohammad N Assaf, Dariusz Alterman, Mustafa Jaradat "Comparison of the overall energy efficiency for internal combustion engine vehicles and electric vehicles" *Environmental and Climate Technologies*, vol. 24, OCT 2020.

- [3] Mathew Habyarimana, DG Dorrell "Methods to reduce the starting current of an induction motor" *IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)*, Chennai, India, pp. 34-38, 2017.
- [4] Mengjie Yang, Mingzhe Rong, Jianbin Pan, Yijun Ye, Aijun Yang, Jifeng Chu, Huan Yuan, and Xiaohua Wang, ",Thermal runaway behavior analysis during overheating for commercial LiFePO4 batteries under various state of charges", *Applied Thermal Engineering*, Volume 230, Part B, July, 2023.
- [5] H. Grotstollen and J. Wiesing, "Torque capability and control of a saturated induction motor over a wide range of flux weakening," *IEEE Transactions on Industrial Electronics*, vol. 42, no. 4, pp. 374-381, Aug. 1995.
- [6] Jens Groot, Maciej Swierczynski, Ana Irina Stan, Søren Knudsen Kær,"On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents", *Journal of Power Sources*, Vol. 286, Pages 475-487, 2015.
- [7] Mustafa Ergin Şahin, Frede Blaabjerg and Ariya Sangwongwanich "Comprehensive review on super capacitor applications and development" *Energies*, vol. 15(3), 2022.
- [8] Jin-uk Jeong, HD Lee, CS Kim, Hang-Seok Choi, Bo-Hyung Cho, "A development of an energy storage system for hybrid electric vehicles using supercapacitor", *Academia*.
- [9] Hao Yang, Santhakumar Kannappan, Amaresh S Pandian, Jae-Hyung Jang, Yun Sung Le, and Wu Lu, "Graphene supercapacitor with both high power and energy density" *Nanotechnology*, October 2017.

Appendix

MATLAB code

>> % Parameters % Parameters
total_time = 10; % Total simulation time (in seconds)
dt = 0.01; % Time step (in seconds)
time = 0:dt:total_time; % Time vector
% Motor parameters motor_constants = struct(); motor_constants.R = 0.5; % Motor resistance (in ohms) motor_constants.L = 0.1; % Motor inductance (in Henry) motor_constants.kt = 0.1; % Motor torque constant (in Nm/ constants.ke = 0.1; % Motor back EMF constant (in V/ % Fully charged supercapacitor parameters supercap_voltage = 24; % Voltage of fully charged
supercapacitor (in volts) supercap_capacity = 2000; % Capacitance of supercapacitor (in Farads) % Battery parameters battery_voltage = 12; % Voltage of the battery (in volts) % Initial conditions % Initial conditions
initial_conditions = struct();
initial_conditions.i_supercap = 0; % Initial current
through motor with supercapacitor (in amperes)
initial_conditions.i_battery = 0; % Initial current
through motor with battery (in amperes)
initial_conditions.omega = 0; % Initial motor speed (in rad/s) % Initialize arrays to store data torque_supercap = zeros(size(time)); torque_battery = zeros(size(time)); current_supercap = zeros(size(time));
current_battery = zeros(size(time)); rpm = zeros(size(time));% Simulation loop for idx = 1:length(time) % Calculate torque with supercapacitor torque_supercap(idx) = motor_constants.kt * initial_conditions.i_supercap; % Calculate torque with battery
 torque_battery(idx) = motor_constants.kt *
initial_conditions.i_battery; % Store current with supercapacitor
current_supercap(idx) = initial_conditions.i_supercap; % Store current with battery current_battery(idx) = initial_conditions.i_battery; % Update motor current and speed using dynamic equations with supercapacitor voltage_supercap = supercap_voltage motor_constants.ke * initial_conditions.omega; dcurrent_dt_supercap = (voltage_supercap motor_constants.R * initial_conditions.i_supercap) /
motor_constants.L; domega_dt_supercap = (motor_constants.kt *
initial_conditions.i_supercap) / motor_constants.L;

```
% Update motor current and speed using dynamic
equations with supercapacitor
    voltage_supercap = supercap_voltage -
motor_constants.ke * initial_conditions.omega;
    dcurrent_dt_supercap = (voltage_supercap
motor_constants.R * initial_conditions.i_supercap) /
motor_constants.L;
    domega_dt_supercap = (motor_constants.kt *
initial conditions.i supercap) / motor constants.L;
    initial_conditions.i_supercap =
initial_conditions.i_supercap + dcurrent_dt_supercap * dt;
    initial conditions.omega = initial conditions.omega +
domega dt supercap * dt;
    % Update motor current and speed using dynamic
equations with battery
    voltage_battery = battery_voltage - motor_constants.ke
* initial_conditions.omega;
    dcurrent_dt_battery = (voltage_battery -
motor constants.R * initial conditions.i battery) /
motor_constants.L;
domega_dt_battery = (motor_constants.kt *
initial_conditions.i_battery) / motor_constants.L;
    initial conditions.i battery =
initial_conditions.i_battery + dcurrent_dt_battery * dt;
    initial_conditions.omega = initial_conditions.omega +
domega dt battery * dt;
    % Calculate RPM
    rpm(idx) = initial conditions.omega * 60 / (2 * pi);
end
% Plotting
figure;
subplot(3,1,1);
plot(time, current_supercap, 'b', 'LineWidth', 1.5);
hold on;
plot(time, current battery, 'm', 'LineWidth', 1.5);
ylabel('Current (A)');
legend('Supercapacitor', 'Battery');
title('Motor Current vs Time');
subplot(3,1,2);
plot(time, torque supercap, 'r--', 'LineWidth', 1.5);
hold on;
plot(time, torque_battery, 'k:', 'LineWidth', 1.5);
ylabel('Torque (Nm)');
legend('Supercapacitor',
                         'Battery');
title('Motor Torque vs Time');
subplot(3,1,3);
plot(time, rpm, 'g-.', 'LineWidth', 1.5);
ylabel('RPM');
legend('Supercapacitor', 'Battery');
title('Motor RPM vs Time');
xlabel('Time (s)');
```