Exploring the Potential of 3D Printed Molds for Rapid and Affordable Prototyping of Carbon Fiber Composites

Sumit Joshi¹, Abhinav Sharma¹, Aryaman Batra¹, Bhavey Goel¹, Pratyush A¹, Priyanshu¹, Vipin Kumar Sharma¹

¹Maharaja Agrasen Institution of Technology, New Delhi, India * Corresponding author. Tel: +91-9997581291, E-mail: sumitjoshi@mait.ac.in

Abstract

This research paper aims to investigate the feasibility and effectiveness of using 3D printed molds for producing carbon fiber composites in an inexpensive prototyping process. The study delves into the manufacturing process of 3D printed molds and their compatibility with carbon fiber composites. In this paper our team conducted tensile testing on the specimen and further x-ray diffraction was done to study the matrix composition and at last to study the feasibility of the process our team designed custom molds for application based parts.

Keywords: additive manufacturing, epoxy resin, chopped carbon fiber, molds, composites

1. Introduction

Many industries, including the aerospace, automotive, railway, naval, sports industry, medical, and civil construction industries routinely employ carbon fiber-reinforced polymers (CFRPs) since they frequently provide higher advantages than the majority of other commonly used materials [1,2]. In additive manufacturing (AM) techniques, the usage of polymers is quite common and has applications in a wide range of fields [3]. According to the ISO/ASTM 52900:2015 standard, fused deposition modeling (FDM) or fused filament fabrication (FFF) is a material extrusion technique [4]. Recently, the technology around FDM/FFF has advanced quite quickly due to the low manufacturing costs and capacity to include a high level of automation [5-8]. With the help of this technique, complicated parts can be made from a variety of thermoplastic filaments, such as polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), polycarbonates, nylons, etc., at a relatively cheap cost of manufacturing. However, FDM is too intrusive for many people. For example, the mechanical properties of thermoplastics parts are significantly worse than a more conventional manufacturing process like injection molding [9].

PLA is preferred over other materials in the context of Fused Deposition Modeling (FDM) owing to its low cost, strong three-dimensional (3D) printability, and natural biodegradability. In addition, the PLA has a lower thermal stress and this diminishes warping during the FDM process. [10]. The enhancement of mechanical properties and surface finish of a product produced through FDM printing can be achieved through the utilization of post-processing methodologies and modifications in the printing parameters. In the research conducted by Porter et al., an examination was carried out to determine the optimal infill percentage for PLA beams in order to enhance specific flexural rigidity, revealing that the optimum infill percentage is situated within the range of 10% to 20% [11].

In the realm of composite material (CM) production, there exists a diverse array of manufacturing methodologies and processes that are currently within reach. The utilization of molds, generated through various techniques and technologies, is a common practice for manufacturing components with intricate geometries. Conventionally, molds are crafted through the computer numerical control (CNC) milling of a solid block of raw material or diverse types of epoxy resins. This particular technological approach demands a substantial investment of labor and time, often accompanied by significant expenses. The adoption of CM presents an alternative route for mold creation; in this scenario, a prototype model is essential, generated through a technique tailored to the specific composite material intended for mold fabrication. In this procedure, FRP layers are applied to the component model, the manufactured part is polymerized after which the mold is removed from the master model. Despite being time-consuming, this technique has a pretty high level of accuracy.

Rapid tooling (RT) [8,10,12,13] is a 3D printing process that was developed for short manufacturing runs. Depending on the material used, the technique can be used to create soft or hard tooling. Through the use of a master 3D printed model or directly through AM, RT is able to make tooling and molds. Thus, using additive manufacturing (AM) enables the direct and quick production of hard tooling, jigs, and molds from a variety of durable materials of the designer's choosing (metals, resins). This study [14] showed that 3D printed molds can be used in dental applications by 3D printing compression molds using PLA and ABS filaments, which were subsequently polished to create customized tooth fillings.

Forging [15, 16], injection molding[17], and CFRP[18] parts are just a few of the processes that have increased interest in the measurement of tools and molds by optical 3D scanning. Traditional molds, such as metal or epoxy resin blocks or composite molds, are frequently very durable but only economically viable when used in conjunction with mass production. Molds that can be created rapidly and for a reasonable price are becoming more and more necessary for the production of small quantities or customized items. An approach that will considerably cut manufacturing time and costs to make molds for CM is 3D printing using FDM/FFF processes and low-cost filaments, like PLA or ABS.

1.1 Literature review

bera et al [1] discuss the unconventional method to manufacture a complex carbon fiber reinforced part using a fused depositional modeled die .In their research they discuss the advantages of carbon fiber reinforced polymer and their application in various industries . [1] Has taken the sports industry as their application. Since there are many categories of additive manufacturing they have chosen fused deposition modeling with an astm standard since out of all the categories fused deposition modeling has the lowest production cost and has high degree of automation. [1] Has also discussed about the capability of FDM to manufacture low cost part as compared to conventional manufacturing method. Although FDM is cost effective, it also has a lot of limitations when compared to traditional methods of manufacturing. To manufacture the molds [1] has chosen Poly lactic acid as the material as compared to acrylonitrile butadiene styrene and have subsequently discussed the application of PLA and ABS. [1] has defined rapid tooling. [1] Concludes that 3d printed molds can be effective approach for limited production runs of composite parts. [2] Stated that additive manufacturing with chemical smoothening of molds can give a smooth external surface finish to the component to be made. [2] Compared the advantages of FDM molds as compared to fiberglass molds. [2] Gave an explanation on chemical smoothening by isopropyl alcohol. [2] Fabricated Fuel Tap Protection for Husqvarna Motorbike with carbon fiber sheets. [2] Sliced the component in cure and chose the optimized orientation of the component. The orientation with minimum surface defects on the curvature and minimum staircase effect on the surface was chosen. Settings of cura were optimized so that there was minimum material

wastage. Dimensional Verification of a 3D-Printed Mold was done with an Optical 3D Scanner. [2] Used vacuum lamination process to fabricate the component.

1.2 Literature gap

In this research paper our team has used the FDM process for manufacturing molds. PLA was chosen to manufacture the molds since it is more economic as compared to other materials. Our team used chopped carbon fiber to fabricate the specimen. Compression molding was done.

2. Materials and Methods:

2.1 Design of Connecting

Materials:

Chopped Carbon fiber (Plain weave) Epoxy resin (Clear) Hardener (Non-toxic) 3D printer filament (PLA)]

Methods:

CAD design and 3D printing of molds: The CAD model of the required part was designed using computer-aided design software. The mold design was then converted to an STL file and 3D printed using a fused deposition modeling (FDM) 3D printer. The printing material used was polylactic acid (PLA) filament.

Mold preparation: Once the mold was printed, it was cleaned and coated with a release agent to prevent the carbon fiber composite from sticking to the mold during the curing process.

Composite layup: The carbon fiber fabric was trimmed to the specified measurements and positioned onto the mold. Subsequently, epoxy resin was blended with hardener in accordance with the guidelines provided by the manufacturer, and then administered onto the fabric using either a brush or roller.

Curing: The carbon fiber composite underwent the curing process within a regulated setting at ambient temperature for duration of 24 hours.

Mold removal: Following the completion of the curing process, the mold was cautiously extracted from the component made of carbon fiber composite.

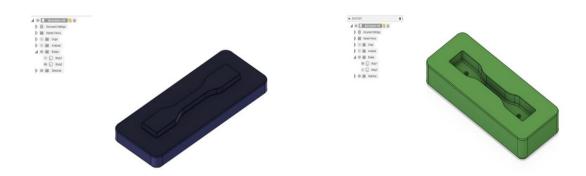
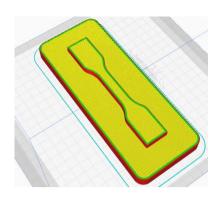



Fig. 1. (a) Male Die CAD design; (b) Female Die CAD design

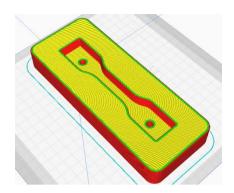


Fig. 2 (a) Male Die; (b) Female Die

Table 1. 3D printing process parameters

Parameter	Value and Unit
Nozzle diameter	0.4 mm
Layer height	0.2 mm
Wall thickness	0.8 mm
No. of walls	4
Infill density	45 %
Nozzle temperature	205 °C

Table 1. Chopped carbon fiber properties

Property	Value and Unit
Fiber length	12 mm
Density	1.81 g/cm3
Carbon content	95%
Tensile strength	3800 Mpa
Elastic modulus	242 Gpa

Table 2. Epoxy resin properties

Property	Value and Unit
Mixing ratio	3:1
Curing time	24 hrs
Tensile strength	78 MPa
Ultimate strength	68 MPa
Tensile modulus	3250 MPa
Flexural strength	90 MPa
Flexural modulus	3700 MPa
Shear strength	58 MPa

Conclusion

Thus this study presents the investigation of 3D printed molds for fabricating carbon fiber composites as a cheap prototype alternative with applicable feasibility and effectiveness. These 3D-printed molds were then fabricated and investigated for their composite properties in the research analysis. The results showed that 3D-printed molds are able to produce carbon fiber composites, which have similar properties as those manufactured using conventional methods.

Further, the non-contact 3D scanning technology facilitated an accurate and dependable operational one for quality control, where the derived information generated necessary tweaks to improve final product quality. The cost-effective and suitable alternative of 3D printed molds was demonstrated by cost-time efficiency analysis compared to traditional methods. In general, this study establishes 3D printed molds for CFRP production as an applicable and encouraging route to low-cost prototyping in the composites industry with potential for improvements to increase manufacturing efficiency and part performance.

Molds manufactured via FDM with thermoplastic polymers exhibit notably reduced expenses and quicker production times, approximately 37.5% and 30% lower, respectively, in comparison to aluminum molds milled using CNC techniques. At first, a high-viscosity epoxy resin designated for casting purposes was utilized, yielding test specimens with slightly inferior strength. Transitioning to a lower-viscosity epoxy resin tailored for carbon fiber composites resulted in enhanced strength.

Funding: This research received no external funding.

Acknowledgments

We would like to express our sincere gratitude to all those who contributed to the successful completion of this research paper. Firstly, we would like to thank our research supervisor for providing valuable guidance, insights, and feedback throughout the study. We would also like to thank the research participants for their valuable contributions and cooperation in this project. Additionally, we extend our thanks to the research team members who worked tirelessly to collect and analyze the data, and to the technical staff who provided their support and assistance in the laboratory. Lastly, we would like to acknowledge the support and resources provided by our institution, which enabled us to conduct this research.

References

- [1] Bere, P.; Neamtu, C.; Udroiu, R. Novel Method for the Manufacture of Complex CFRP Parts Using FDM-based Molds. *Polymers* **2020**, *12*, 2220.
- [2] Molds with Advanced Materials for Carbon Fiber Manufacturing with 3D Printing Technology Patrich Ferretti *, Gian Maria Santi , Christian Leon-Cardenas * , Marco Freddi, Giampiero Donnici , Leonardo Frizziero and Alfredo Liverani
- [3] Henderson, L. Carbon Fibers and Their Composite Materials; MDPI AG: Basel, Switzerland, 2019; ISBN-13: 978-3039211029, ISBN-10: 3039211021.
- [4] Barbero, E.J. Introduction to Composite Materials Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN-10: 1-138-19680-0
- [5] Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O'Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37.
- [6] International Organization for Standardization. Standard Terminology for Additive Manufacturing General Principles—Terminology; ISO/ASTM 52900-15; ISO/ASME International: Geneva, Switzerland, 2015.
- [7] Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototype. J. 2014, 20, 192–204.
- [8] Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2015.
- [9] Gerphard, A. Understanding Additive Manufacturing, Rapid Prototyping-Rapid Tooling-Rapid Manufacturing; Publisher Carl Hanser Verlag GmbH & Co. KG Munchen: Munich, Germany, 2011; ISBN-13: 978-1-56990-507-4.
- [10] Gebhardt, A.; Kessler, J.; Thurn, L. Basics of 3D Printing Technology; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2018; ISBN 978-1-56990-702-3.
- [11] Andreas, F.; Steve, R.; Thomas, B. New Fiber Matrix Process with 3D Fiber Printer—A Strategic In-process Integration of Endless Fibers Using Fused Deposition Modeling (FDM).

- In Proceedings of the IFIP International Conference on Digital Product and Process Development Systems, Dresden, Germany, 10–11 October 2013; pp. 167–175.
- [12] García Plaza, E.; Núñez López, P.J.; Caminero Torija, M.Á.; Chacón Muñoz, J.M. Analysis of PLA Geometric Properties Processed by FFF Additive Manufacturing: Effects of Process Parameters and Plate-Extruder Precision Motion. Polymers 2019, 11, 1581.
- [13] Porter, J.H.; Cain, T.M.; Fox, S.L.; Harvey, P.S. Influence of infill properties on flexural rigidity of 3D-printed structural members. Virtual Phys. Prototyp. 2019, 14, 148–159.
- [14] Udroiu, R. Rapid Tooling by Three Dimensional Printing (3DP). Proceedings of the 3rd WSEAS International Conference on Manufacturing Engineering, Quality and Production Systems, Recent Researches in Manufacturing Engineering, Brasov, Romania, 11–13 April 2011; pp. 177–180.
- [15] Udroiu, R.; Braga, I.C. Polyjet technology applications for rapid tooling. In Proceedings of the IManE&E 2017 MATEC Web of Conferences, Iasi, Romania, 25–26 May 2017; pp. 1–6.
- [16] Yanga, Y.; Lia, H.; Xua, Y.; Dongb, Y.; Shana, W.; Shenc, J. Fabrication and evaluation of dental fillers using customized molds via 3D printing technology. Int. J. Pharm. 2019, 562, 66–75.
- [17] Hawryluk, M.; Ziemba, J.; Sadowski, P. A Review of Current and New Measurement Techniques Used in Hot Die Forging Processes. Meas. Control 2017, 50, 74–86.
- [18] Hawryluk, M.; Gronostajski, Z.; Ziemba, J.; Janik, M.; Górski, P.; Lisowski, M. Support Possibilities for 3D Scanning of Forging Tools with Deep and Slim Impressions for an Evaluation of Wear by Means of Replication Methods. Materials 2020, 13, 1881.
- [19] Nelson, J.W.; LaValle, J.J.; Kautzman, B.D.; Dworshak, J.K.; Johnson, E.M. Injection molding with an additive manufacturing tool study shows that 3D printed tools can create parts comparable to those made with P20 tools, at a much lower cost and lead time. Plast. Eng. Conn. 2017, 73, 60–66.
- [20] Neamt,u, C.; Bere, P. Methods for Checking the Symmetry of the Formula One Car Nose. Appl. Mech. Mater. 2014, 657, 785–789