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Abstract: Software defect prediction proactively highlights critically vulnerable elements for a software system. Recent
attempts in this domain have tried various machine learning techniques to automate and improve software defect
prediction. It has been observed that recent research focusses on specific types of software and hence the solution is not
suitable for all kind of sofiware products. This paper proposes a generic approach based on Logistic Regression, Decision
Trees, Random Forests, Naive Bayes, Support Vector Machine for software defect prediction. Proposed approach is
applicable on all type of software products and the results shows defect occurrence are not directly correlated with the
quantity of modifications.
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I. INTRODUCTION

The need for producing affordable, maintainable software without sacrificing quality has increased due to the software
systems' growing dependence. The likelihood of the software having a flaw is therefore very high. If errors are identified
later in the software development process, the associated costs for their prompt resolution significantly increases. Software
prediction models can be applied to initial phases of the software development life cycles. Additionally, utilizing them
cuts down on project costs, time, and effort spent on testing and maintenance, which boosts the software's quality. We can
work to strengthen the software's weaker components by identifying the defective portions of those components. Thus, it
is possible to create high-quality software with inexpensive development and maintenance costs.
Researchers have developed models that can predict these issues precisely and rapidly. These methods include the use of
cutting-edge techniques like machine learning and data analysis. One of the efficient methods in this area may be ensemble
techniques. They function by merging the results of various models, which increases their accuracy and dependability.
It's similar to consulting with several experts before making a decision. This study focuses on investigating how ensemble
techniques might be applied to improve software defect prediction. By doing this, we intend to raise the standard of
software, lessen the effort required to address problems, and enhance the functionality of software systems as a whole.
This research paper's major goal is to examine how ensemble techniques can be used to forecast software flaws and to
comprehend the advantages they have over more conventional single-model methods. We studied their attributes
individually. The following are the objectives of the study:
1. Review and analyze the available investigation on ensemble strategies for predicting software defects, including
their methodologies, algorithms, and performance measures.
2. To increase the precision and dependability of predictions, propose and create a defect prediction framework that
integrates various base models, such as decision trees, support vector machines, or neural networks.
3. Run thorough tests and assessments on standard datasets to compare ensemble techniques' performance to that
of individual models and other cutting-edge fault prediction techniques.
4. Highlight the strengths, weaknesses, and practical consequences of employing ensemble approaches for software
defect prediction as you analyze and interpret the data.
5. After analyzing the weaknesses and the faults that were found while ensemble technique, we can now correct
them by studying the correlation between the attributes and how they are dependable on each other.
The outcomes will aid the awaited testers in identifying the most effective evolutionary algorithm. We examined and
inspected the outcomes of five data vaults using six different machine learning models. We further correlated the attributes
individually and saw their dependencies and how they affect the defect in the software.
The information in the paper is arranged as follows: Section 2 of the linked effort contains investigations and related
literatures. The proposed algorithm that will be used is described in Section 3 along with the calculated experimental
findings. In Section 4, the findings were calculated, analyzed and drawn. The summary of the work done in the study is
presented in Section 5. In section 6 we discussed the future scope of the research.
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II. LITERATURE REVIEW
Software metrics are essential for managing projects, especially when dealing with new technologies like object-oriented
design. There are some studies that introduce a set of metrics tailored for object-oriented systems [6][7], grounded in
measurement theory and informed by experienced developers. The suggested metrices undergo a formal evaluation based
on predefined criteria.
As object-oriented methods gain popularity in software development, researchers are working on metrics to develop new
models and improve the old practices. An analysis of metrics by Chidamber and Kemerer [7] shows their usefulness for
managers in industries. Empirical data supports these metrics, underscoring their significant impact on the ingenuity,
modify effort, and creation effort in object-oriented systems.
The coupling dependency metric (CDM) [5] proves successful in design quality. When applied to case studies involving
COBOL, C, C++, and Java systems, CDM outperforms other metrics in anticipating run-time failures and gauging
maintenance requirements. This suggests that coupling metrics, like CDM, can reliably predict interaction levels in
software products.
AUC, Accuracy, Precision, Recall and Mean are just a few of the different metrics that have been employed in numerous
studies to predict the presence of faulty classes in software systems. These performance measures evaluate the connection
between object-oriented metrics and flawed classes using statistical methods and classification algorithms. Observers
have employed various methods, including Logistic Regression (LR), Naive Bayes, Random Forest, Decision Trees,
Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian approaches, and Artificial Immune
Recognition System [(1)-(3)], to develop predictive models and evaluate their efficacy.
In study [3], the object-oriented metrics is employed in the Mozilla dataset in conjunction with LR gave good results in
predicting defective classes. In other study, Linear Regression was compared with three machine learning methods (Naive
Bayes, and Random Forest) to categorize object-oriented metrics based on the severity of defects. The investigation
showed that models created for high severity levels had reduced prediction accuracy, and ML approach performance
metrics were generally low.
Other research [2] evaluated defect prediction models using various datasets, including NASA KC1 and Java Telecom,
employing logistic regression, decision trees, ANN, SVM, and Multi Objective PSO approaches. The results highlighted
the potential of neural networks and Bayesian methods by demonstrating improved performance with various models and
strategies. Additionally, it was shown that decision trees (C4.5) produced greater accuracy when decision tree approaches
were used together with neural networks, logistic regression, and SVM.
Another research [1] assessed datasets utilizing machine learning algorithms and 10-fold cross-validation methods. These
studies demonstrate the efficacy of various methods and models in this field and jointly advance understanding of software
fault prediction.
Software metrics, crucial for project management, are being developed for object-oriented systems, evaluated against
established criteria. Object-oriented methods are gaining popularity, with metrics by Chidamber and Kemerer proving
useful for managers and impacting productivity in empirical studies. The Coupling Dependency Metric (CDM)
successfully predicts run-time failures in diverse systems, indicating its reliability in assessing interaction levels.

III. METHOD
3.1 Research Question for Data
RQ1: What are the machine learning model does SDP uses?
Despite the fact that there are numerous machine learning algorithms, five are chosen for this paper: SVM, NB, DT, LR,
and RF.
RQ2: What data sources are employed for SDP?
We employed five different Android software application packages in this paper: Telephony, Gallery, Email, Contacts,
and Bluetooth.
RQ3: What performance metrices are utilized in SDP?
In this research, we employ diverse object-oriented measures, encompassing Tang et al. measurements, Chidamber &
Kemerer indicators, Henderson Sellers indicators, Martin's indicators, and the QMOOD indicator suite. Subsequently,
these measures are utilized as features, and we undertake a reduction process for optimization purposes.
RQ4: How can the effectiveness of evolutionary approaches be evaluated using machine learning models?
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Fig.1: Working of Ensemble technique
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Using the Ensemble approach, we validated the results in this work (As shown in Figl above).

RQS5: Are there any additional models or techniques used to find the software defect?
Yes, there is one more technique that is by using the dependencies of different attributes from the dataset to visualize how
they affect the change in the software and hence create a defect.
3.2.1 Defect prediction (Algorithms)
The actions taken to apply the algorithm to the dataset for Android are as follows:
1. Collect data sets from Android software archives.
2. Calculate all classification techniques' precision, Recall, Accuracy, and F-1 scores using all available features.
3. The scores for Precision, Recall, F-1, and Accuracy obtained from various classification techniques are included
in TABLE 1, TABLE 11, TABLE 1lI, and TABLE 1V, along with a comparison between them and the evolutionary
algorithm Ensemble Technique. The data from TABLE I and II are represented by the precision graph in Fig. 1.
4. Repetition of step 3 is required for the remaining Android datasets.
5. Obtain the ensemble technique's precision, accuracy, F-1 score, and recall values.
6. Compare all the values using graphs and get the best fit model.

3.2.1 Defect prediction (Correlation between different attributes) (The method is explained in Fig.2 given below)
The description of the method shown in Fig.2 is explained as follows:
1. To propose a general method, we perform various visualizing techniques amongst the various attributes which
does not depend on the type of software.
2.  We take in consideration the following attributes:
i.  Number defects
ii.  Number of changes
iili.  Number of Insertions
iv. Number of Deletions
V. Defect count
3. Now investigating the influence of the number of changes on the defect count to find the correlation between
them and hence predicting the output on this basis.
4. Further investigating the attributes which might have influenced the number of changes to decrease and increase
in the software.

Factors not

depending - -
on the Finding the Investigting the
correlation affect of attributes
softwares between the on the number of

genral code defect count and changes
the number of happening in the
changes software
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Fig.2: Working for the technique selecting special features to find the reasons for the defect in the software

IV. COMPARE THE RESULTS
4.1.1 Defect Prediction using ensemble technique

We used the ensemble technique to validate the findings.
Experimental Findings:
Precision is calculated as the effectiveness of all datasets for classification procedures in TABLE 1. The determined Recall
value for each type of dataset is shown in TABLE II. The F-1 scores for each dataset are calculated in TABLE III using
various approaches. Accuracy is determined for each dataset in TABLE IV.
Figure 1 displays a graph generated from TABLE I for each of the created models. The table's investigation led us to the
following conclusions:
l. In comparison to standalone classification models, RF, DT, SVM, and NB yielded the most significant
outcomes. The utilization of ensemble techniques is found to enhance precision.
1. It also demonstrates that the model can produce the best results when employing the voting classifier
Ensemble.
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Graphs for each model are taken from TABLE II shown in Fig. 2. Following a review of the table, we draw the following
conclusions:

. When compared to classification models alone, recall performed best for DT, RF, and NB. It is concluded
that precision can be increased by employing the ensemble technique.

Here is the plot for each model using TABLE III shown in Fig. 3. Following a review of the table, we draw the following
conclusions:

I Compared to conventional classification models, the F-1 score produced the greatest results for DT, RF, and
LR. It is concluded that precision can be increased by employing the ensemble technique.

A graph plotted using TABLE IV for all created models is shown in Fig. 4. Following a review of the table, we draw the
following conclusions:

I When compared to traditional classification models, accuracy produced the greatest results with DT, RF,

and NB. It is concluded that precision can be increased by employing the ensemble technique.

TABLE I: Precision of Datasets using Ensemble Techniques and Classification

LR DF |RF SVM NB ENSEMBLE
Neivetootn 05 1 08333 |o 1 0.833333333
N contacts 1 1 1 1 1 1
Nemail 09375 1 [1 03125 1 1
Neatery 08438 [1 [1 0.1563 1 1
Rreicpnony 09574 |1 |1 1 1 1

TABLE II: Recall Value of Datasets using Classification and Ensemble Techniques

LR | DF | RF | SVM NB ENSEMBLE
Bluetooth 1 1 1 0 1 1
Contacts 1 1 1 1 1 1
Email 1 1 1 1 0.71111 |1
Gallery 1 1 1 1 0.84211 | 1
Telephony | 0.9 | 1 1 0.6912 | 0.94 0.979166667

TABLE III: F-1 scores of Datasets using Classification and Ensemble Techniques

LR DF | RF SVM NB ENSEMBLE
Bluetooth | 0.66667 | | 0.909090909 | 0 1 0.909090909
Contacts | 1 1 1 0711111111 |1 1
Email 096774 | 1 1 0.476190476 | 0.83117 | 1
Gallery 0.91525 | 1 1 0.27027027 1 0.91429 | 1
Telephony | 0.92784 | 1 1 0.817391304 | 0.96907 | 0.989473684

TABLE IV: Accuracy of Datasets using Classification and Ensemble Techniques

LR DF |RF SVM NB ENSEMBLE
Bluetooth 0.8636 |1 0.954545455 [0.727272727 |1 0.954545455
Contacts 1 1 1 0.793650794 |1 1
Email 0.9859 |1 1 0.845070423 |0.9085 |1
Gallery 0.9558 |1 1 0.761061947 [0.9469 |1
Telephony 09744 |1 1 0.876923077 |0.9846 |1
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Fig. 3. Graph for computed Precision as performance measures
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Fig. 4. Graph for computed Recall as performance measures

12
1
0.
06
0.4
0.2
0
& & @

Ny N
¥

S

<

H Bluetooth B Contacts M Email B Gallery ®Telephony

Fig. S. Graph for calculated F-1 score as performance measures

1.2
1
0.8
0.6
0.4
0.2
0
s@
S

H Bluetooth M Contacts ™ Email M Gallery mTelephony

Fig. 6. Graph for calculated Accuracy as performance measures



MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

Following is a summary of the conclusions reached from the above findings:

Precision was estimated and analyzed using various machine learning techniques by taking into account TABLE
The calculation of Precision using different machine learning models exhibited optimal performance across
diverse datasets. For instances, the Bluetooth dataset achieved superior results with the DT and NB Techniques,
contact dataset, which performed best using all classification models and Ensemble method, Email dataset, which
performed best using all classification models and Ensemble method, and Gallery dataset, which performed best
using all classification models.

By taking into account TABLE II, the recall computed across various machine learning models, demonstrated
optimal performance on distinct datasets. Specifically, the NB technique yielded the best results for the Bluetooth
dataset, while the Contacts dataset performed most effectively with DT, LR, RF, and Ensemble Technique. In
the case of the Email dataset, superior results were achieved with DT, RF, and Ensemble Technique, whereas the
Telephony dataset excelled across all models, except for LR and SVM.

4.1.2 Finding the correlation between the matrices

As for the results we obtained from 4.1.1 we can see that all the models have accurately predicted the defect which shows
that the data is biased or either imbalanced and predicts the defect with the slightest of the errors.

As we now know that the data, we are using maybe having an incline towards one of the specific groups so we will now
find the dependencies or the relation between the metrices.

We have visualized the relation between the matrices using scatter plots. The Visualization has taken place in between the
following attributes:

1) Defect-Count vs Total Number of changes

2)The count of insertions vs Total Number of changes

3)Number of deletions vs Total number of changes

4)Defect-Count vs Number of Deletions

5)Defect-Count vs Number of Insertions

The visualizations are as follows:

1) Defect-Count vs Total Number of changes

Gallery 4.2: Defect Count vs Total Number of Changes

Total number of Defects

Total Number of Changes

Fig. 7. Scatter plot showing the relation between the Defect Count and the Total Number of changes for Gallery

version 4.2 dataset

Gallery 3.1: Defect Count vs Total Number of Changes

Total number of Defects

Total Number of Changes

Fig. 8. Scatter plot showing the relation between the Defect Count and the Total Number of changes for Gallery

version 3.1 dataset
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Email: Defect Count vs Total Number of Changes

Total number of Defects

1o

e -
Fig. 9. Scatter plot showing the relation between the Defect Count and the Total Number of changes for email
dataset

Conlacts: Defect Count vs Total Number of Changes

Total number of Defects

Fig. 10. Scatter plot showing the relation between the Defect Count and the Total Number of changes for contact
dataset

I The relationship between the number of changes and the occurrence of defects is not strictly proportional.
While there is an initial trend of increasing defects with the number of changes, this trend does not persist
beyond a certain point, typically around an average of 1000 changes.

1. After reaching this threshold, the number of defects remains relatively constant, indicating that additional
changes beyond this level do not lead to a significant increase in defects. This suggests that the correlation
between the two variables is not direct and may be influenced by additional factors or attributes. [Fig.7]
[Fig.8] [Fig.9] [Fig.10]

I1. Further investigation into these contributing factors is needed to better understand the dynamics of defect
occurrence in relation to changes.

2) Number of insertions vs Total Number of changes

Gallery 4.2: Insertions vs Total Number of Changes

Insertions.

Total Number of Changes

Fig. 11. Graph showing the association between the number of insertions and the Total Number of changes for
Gallery version 4.2 dataset
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Gallery 3.1: Insertions vs Total Number of Changes

Insertions
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Fig. 12. Scatter plot showing the association between the number of insertions and the Total Number of changes
for Gallery version 3.1 dataset

Email: Insertions vs Total Number of Changes

Total Number of Ghanges

Fig.13. Scatter plot having the association between the number of deletions and the total number of changes

Email: Insertions vs Total Number of Changes

Insertions

1500 200
Total Number of Changes

Fig. 14. Scatter plot showing the association between the number of insertions and the Total Number of changes
email dataset
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Contacts: Insertions vs Total Number of Changes

Insertions

Total Number of Changes

Fig. 15. Scatter plot showing the association between the number of insertions and the Total Number of changes
contacts dataset
I Based on the presented findings, it is evident that an increase in the number of insertions does not result in
a notable escalation in the software's modification rate. Consequently, it can be concluded that the frequency
of changes remains unaffected by the quantity of insertions made. [Fig.11] [Fig.12] [Fig.13] [Fig.14]

3) Number of deletions vs Total number of changes

Gallery 4.2: Deletions vs Tolal Number of Changes

Deletions

Total Number of Changes

Fig. 16. Scatter plot showing the association between the number of deletions and the Total Number of changes
for gallery version 4.2 dataset

Gallery 3.1: Deletions vs Total Number of Changes

Deletions

Total Number of Changes

Fig. 17. Scatter plot showing the association between the number of deletions and the Total Number of changes
for gallery version 3.1 dataset
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Email: Deletions vs Total Number of Changes

Deletions
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Fig. 18. Scatter plot showing the association between the number of deletions and the Total Number of changes
for email dataset

Contacts: Deletions vs Total Number of Changes

Deletions

s

-

Fig. 19. Scatter plot showing the association between the number of deletions and the Total Number of changes
for contacts dataset

From the above findings, it is evident that an increase in the number of deletions leads to a rise in the
software modification rate. Consequently, it can be concluded that the frequency of changes is affected by

the number of deletions happening in the software. [Fig.16] [Fig. 17] [Fig.18] [Fig.19]

4) Defect-Count vs Number of Deletions

Gallery 4.2: Defect Count vs Deletions

Deletions

P
Tebne.
Defect Count

Fig. 20. Scatter plot showing the association between Defect-count and the Total Number of deletions for gallery
version 4.2 dataset

Gallery 3.1: Defect Count vs Deletions

Deletions.

Defect Count

10



MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

Fig. 21. Scatter plot showing the association between Defect-count and the Total Number of deletions for gallery
version 3.1 dataset

Email: Defect Count vs Deletions

Deletions

Defect Count

Fig. 22. Scatter plot showing the association between Defect-count and the Total Number of deletions for email
dataset

Contacts: Defect Count vs Deletions

Deletions

Defect Count

Fig. 23. Scatter plot showing the association between Defect-count and the Total Number of deletions for contacts
dataset

I Based on the presented findings, we can observe that the even after increasing the count of deletions does
not surpass an average of 30 defects. Hence it can be concluded that the increase in the number of
deletions does not escalates the number of defects in the software design. [Fig.20] [Fig.21] [Fig.22]
[Fig.23]

5) Defect-Count vs Number of Insertions

Gallery 4.2. Defect Count vs Insertions

insertions
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o
St v gt
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Defect Count

Fig. 24. Scatter plot showing the association between Defect-count and the Total Number of insertions for gallery
version 4.2 dataset
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Gallery 3.1: Defect Count vs Insertions

" Defoct Count

25. Scatter plot showing the association between Defect-count and the Total Number of insertions for gallery
version 3.1 dataset

Email: Defect Count vs Insertions.

Insertions

Defect Count

Fig. 26. Scatter plot showing the association between Defect-count and the Total Number of insertions for email

dataset

Contact: Defect Count vs Insertions

Insertions

Fig. 27. Scatter plot showing the association between Defect-count and the Total Number of insertions for
contacts dataset

I The relationship between the number of changes and the occurrence of defects in software is complex and
not strictly proportional. While there is an initial trend of increasing defects with the number of changes,
this trend plateaus after a certain point, typically around an average of 1000 changes.

. Beyond this threshold, the number of defects remains relatively constant, suggesting that additional changes
do not significantly impact defect occurrence.

I1. Moreover, the statements indicate that the frequency of changes is not significantly influenced by the number
of insertions or deletions in the software.

(AVA It is evident from the visualization that defect occurrence is not directly correlated with the number of
modifications and may be influenced by additional factors or attributes that require further investigation.
[Fig.24] [Fig.25] [Fig.26] [Fig.27]

V. CONCLUSION

Using the Ensemble technique, we were able to provide useful results for future research. The results indicate that applying
the Ensemble Technique, the metrics provided over 100% accuracy, indicating that our data is either biased or imbalanced.
For further investigation the relationship between the number of changes and the occurrence of defects in software were
compared which were found to be complex and not strictly proportional. While there is an initial trend of increasing
defects with the number of changes, this trend plateaus after a certain point, typically around an average of 1000 changes
(according to the software dataset taken in consideration which can be different for different software). Beyond this
threshold, the number of defects remains relatively constant, suggesting that additional changes do not significantly

12
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impact defect occurrence. Moreover, the statements indicate that the frequency of changes is not significantly influenced
by the number of insertions or deletions in the software. It is evident that the occurrence of defects is not directly correlated
with the number of modifications and may be influenced by additional factors or attributes that require further
investigation.

Our research used different prediction techniques for our studies, but we found some issues with our data accuracy,
possibly due to bias. When looking at how software changes relate to defects, we noticed that defects increased with more
changes, but only up to the threshold the defect occurrence stayed constant. Interestingly, the number of defects wasn't
influenced by the new addition or removal of the software components. This complexity suggests there are other factors
affecting the number of defects such as the change in the functionality of the software which can be further be taken in
consideration while using different techniques.

VI. FUTURE SCOPE
There is room for more learning because the dataset used for the article was biased and unbalanced. For improved
outcomes, we can also use the transfer learning technique. The future scope may also include studying about different
metrices available in the dataset for evaluation which play a role in shaping defect dynamics, contributing to a more
comprehensive understanding of software development challenges and solutions.
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