
MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

1

PREDICTION OF DEFECTS WITH CHANGES IN SOFTWARE

JINAL GUPTA 1*, DR. ANSHU KHURANA 2, NITISH UPPAL 3

1 2 3Department of Artificial Intelligence and Data Science, Maharaja Agrasen Institute of Technology, Rohini, Delhi

* Corresponding Author. E-mail: jinalbirla@gmail.com

Abstract: Software defect prediction proactively highlights critically vulnerable elements for a software system. Recent

attempts in this domain have tried various machine learning techniques to automate and improve software defect

prediction. It has been observed that recent research focusses on specific types of software and hence the solution is not

suitable for all kind of software products. This paper proposes a generic approach based on Logistic Regression, Decision

Trees, Random Forests, Naïve Bayes, Support Vector Machine for software defect prediction. Proposed approach is

applicable on all type of software products and the results shows defect occurrence are not directly correlated with the

quantity of modifications.

Keywords: Defect Prediction, Machine Learning Techniques, Software defect prediction Metrices, Ensemble Technique,

Attribute correlation

I. INTRODUCTION

The need for producing affordable, maintainable software without sacrificing quality has increased due to the software

systems' growing dependence. The likelihood of the software having a flaw is therefore very high. If errors are identified

later in the software development process, the associated costs for their prompt resolution significantly increases. Software

prediction models can be applied to initial phases of the software development life cycles. Additionally, utilizing them

cuts down on project costs, time, and effort spent on testing and maintenance, which boosts the software's quality. We can

work to strengthen the software's weaker components by identifying the defective portions of those components. Thus, it

is possible to create high-quality software with inexpensive development and maintenance costs.

Researchers have developed models that can predict these issues precisely and rapidly. These methods include the use of

cutting-edge techniques like machine learning and data analysis. One of the efficient methods in this area may be ensemble

techniques. They function by merging the results of various models, which increases their accuracy and dependability.

It's similar to consulting with several experts before making a decision. This study focuses on investigating how ensemble

techniques might be applied to improve software defect prediction. By doing this, we intend to raise the standard of

software, lessen the effort required to address problems, and enhance the functionality of software systems as a whole.

This research paper's major goal is to examine how ensemble techniques can be used to forecast software flaws and to

comprehend the advantages they have over more conventional single-model methods. We studied their attributes

individually. The following are the objectives of the study:

1. Review and analyze the available investigation on ensemble strategies for predicting software defects, including

their methodologies, algorithms, and performance measures.

2. To increase the precision and dependability of predictions, propose and create a defect prediction framework that

integrates various base models, such as decision trees, support vector machines, or neural networks.

3. Run thorough tests and assessments on standard datasets to compare ensemble techniques' performance to that

of individual models and other cutting-edge fault prediction techniques.

4. Highlight the strengths, weaknesses, and practical consequences of employing ensemble approaches for software

defect prediction as you analyze and interpret the data.

5. After analyzing the weaknesses and the faults that were found while ensemble technique, we can now correct

them by studying the correlation between the attributes and how they are dependable on each other.

The outcomes will aid the awaited testers in identifying the most effective evolutionary algorithm. We examined and

inspected the outcomes of five data vaults using six different machine learning models. We further correlated the attributes

individually and saw their dependencies and how they affect the defect in the software.

The information in the paper is arranged as follows: Section 2 of the linked effort contains investigations and related

literatures. The proposed algorithm that will be used is described in Section 3 along with the calculated experimental

findings. In Section 4, the findings were calculated, analyzed and drawn. The summary of the work done in the study is

presented in Section 5. In section 6 we discussed the future scope of the research.

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

2

II. LITERATURE REVIEW

Software metrics are essential for managing projects, especially when dealing with new technologies like object-oriented

design. There are some studies that introduce a set of metrics tailored for object-oriented systems [6][7], grounded in

measurement theory and informed by experienced developers. The suggested metrices undergo a formal evaluation based

on predefined criteria.

As object-oriented methods gain popularity in software development, researchers are working on metrics to develop new

models and improve the old practices. An analysis of metrics by Chidamber and Kemerer [7] shows their usefulness for

managers in industries. Empirical data supports these metrics, underscoring their significant impact on the ingenuity,

modify effort, and creation effort in object-oriented systems.

The coupling dependency metric (CDM) [5] proves successful in design quality. When applied to case studies involving

COBOL, C, C++, and Java systems, CDM outperforms other metrics in anticipating run-time failures and gauging

maintenance requirements. This suggests that coupling metrics, like CDM, can reliably predict interaction levels in

software products.

AUC, Accuracy, Precision, Recall and Mean are just a few of the different metrics that have been employed in numerous

studies to predict the presence of faulty classes in software systems. These performance measures evaluate the connection

between object-oriented metrics and flawed classes using statistical methods and classification algorithms. Observers

have employed various methods, including Logistic Regression (LR), Naïve Bayes, Random Forest, Decision Trees,

Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian approaches, and Artificial Immune

Recognition System [(1)-(3)], to develop predictive models and evaluate their efficacy.

In study [3], the object-oriented metrics is employed in the Mozilla dataset in conjunction with LR gave good results in

predicting defective classes. In other study, Linear Regression was compared with three machine learning methods (Naive

Bayes, and Random Forest) to categorize object-oriented metrics based on the severity of defects. The investigation

showed that models created for high severity levels had reduced prediction accuracy, and ML approach performance

metrics were generally low.

Other research [2] evaluated defect prediction models using various datasets, including NASA KC1 and Java Telecom,

employing logistic regression, decision trees, ANN, SVM, and Multi Objective PSO approaches. The results highlighted

the potential of neural networks and Bayesian methods by demonstrating improved performance with various models and

strategies. Additionally, it was shown that decision trees (C4.5) produced greater accuracy when decision tree approaches

were used together with neural networks, logistic regression, and SVM.

Another research [1] assessed datasets utilizing machine learning algorithms and 10-fold cross-validation methods. These

studies demonstrate the efficacy of various methods and models in this field and jointly advance understanding of software

fault prediction.

Software metrics, crucial for project management, are being developed for object-oriented systems, evaluated against

established criteria. Object-oriented methods are gaining popularity, with metrics by Chidamber and Kemerer proving

useful for managers and impacting productivity in empirical studies. The Coupling Dependency Metric (CDM)

successfully predicts run-time failures in diverse systems, indicating its reliability in assessing interaction levels.

III. METHOD

3.1 Research Question for Data

RQ1: What are the machine learning model does SDP uses?

Despite the fact that there are numerous machine learning algorithms, five are chosen for this paper: SVM, NB, DT, LR,

and RF.

RQ2: What data sources are employed for SDP?

We employed five different Android software application packages in this paper: Telephony, Gallery, Email, Contacts,

and Bluetooth.

RQ3: What performance metrices are utilized in SDP?

In this research, we employ diverse object-oriented measures, encompassing Tang et al. measurements, Chidamber &

Kemerer indicators, Henderson Sellers indicators, Martin's indicators, and the QMOOD indicator suite. Subsequently,

these measures are utilized as features, and we undertake a reduction process for optimization purposes.

RQ4: How can the effectiveness of evolutionary approaches be evaluated using machine learning models?

Fig.1: Working of Ensemble technique

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

3

Using the Ensemble approach, we validated the results in this work (As shown in Fig1 above).

RQ5: Are there any additional models or techniques used to find the software defect?

Yes, there is one more technique that is by using the dependencies of different attributes from the dataset to visualize how

they affect the change in the software and hence create a defect.

3.2.1 Defect prediction (Algorithms)

The actions taken to apply the algorithm to the dataset for Android are as follows:

1. Collect data sets from Android software archives.

2. Calculate all classification techniques' precision, Recall, Accuracy, and F-1 scores using all available features.

3. The scores for Precision, Recall, F-1, and Accuracy obtained from various classification techniques are included

in TABLE l, TABLE ll, TABLE lll, and TABLE lV, along with a comparison between them and the evolutionary

algorithm Ensemble Technique. The data from TABLE I and II are represented by the precision graph in Fig. 1.

4. Repetition of step 3 is required for the remaining Android datasets.

5. Obtain the ensemble technique's precision, accuracy, F-1 score, and recall values.

6. Compare all the values using graphs and get the best fit model.

3.2.1 Defect prediction (Correlation between different attributes) (The method is explained in Fig.2 given below)

The description of the method shown in Fig.2 is explained as follows:

1. To propose a general method, we perform various visualizing techniques amongst the various attributes which

does not depend on the type of software.

2. We take in consideration the following attributes:

i. Number defects

ii. Number of changes

iii. Number of Insertions

iv. Number of Deletions

v. Defect count

3. Now investigating the influence of the number of changes on the defect count to find the correlation between

them and hence predicting the output on this basis.

4. Further investigating the attributes which might have influenced the number of changes to decrease and increase

in the software.

Fig.2: Working for the technique selecting special features to find the reasons for the defect in the software

IV. COMPARE THE RESULTS

4.1.1 Defect Prediction using ensemble technique

We used the ensemble technique to validate the findings.

Experimental Findings:

Precision is calculated as the effectiveness of all datasets for classification procedures in TABLE I. The determined Recall

value for each type of dataset is shown in TABLE II. The F-1 scores for each dataset are calculated in TABLE III using

various approaches. Accuracy is determined for each dataset in TABLE IV.

Figure 1 displays a graph generated from TABLE I for each of the created models. The table's investigation led us to the

following conclusions:

I. In comparison to standalone classification models, RF, DT, SVM, and NB yielded the most significant

outcomes. The utilization of ensemble techniques is found to enhance precision.

II. It also demonstrates that the model can produce the best results when employing the voting classifier

Ensemble.

Factors not
depending

on the
softwares

genral code
or

programming
language

Listing out the
attributes not

affected by the
type of software

i.e, number of
changes,

defects,insertions
and deletions

made

Finding the
correlation

between the
defect count and

the number of
changes

Investigting the
affect of attributes
on the number of

changes
happening in the

software

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

4

Graphs for each model are taken from TABLE II shown in Fig. 2. Following a review of the table, we draw the following

conclusions:

I. When compared to classification models alone, recall performed best for DT, RF, and NB. It is concluded

that precision can be increased by employing the ensemble technique.

Here is the plot for each model using TABLE III shown in Fig. 3. Following a review of the table, we draw the following

conclusions:

I. Compared to conventional classification models, the F-1 score produced the greatest results for DT, RF, and

LR. It is concluded that precision can be increased by employing the ensemble technique.

A graph plotted using TABLE IV for all created models is shown in Fig. 4. Following a review of the table, we draw the

following conclusions:

I. When compared to traditional classification models, accuracy produced the greatest results with DT, RF,

and NB. It is concluded that precision can be increased by employing the ensemble technique.

TABLE I: Precision of Datasets using Ensemble Techniques and Classification

TABLE II: Recall Value of Datasets using Classification and Ensemble Techniques

TABLE III: F-1 scores of Datasets using Classification and Ensemble Techniques

TABLE IV: Accuracy of Datasets using Classification and Ensemble Techniques

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

5

Fig. 3. Graph for computed Precision as performance measures

Fig. 4. Graph for computed Recall as performance measures

Fig. 5. Graph for calculated F-1 score as performance measures

Fig. 6. Graph for calculated Accuracy as performance measures

0
0.2
0.4
0.6
0.8

1
1.2

Bluetooth Contacts Email Gallery Telephony

0
0.2
0.4
0.6
0.8

1
1.2

Bluetooth Contacts Email Gallery Telephony

0
0.2
0.4
0.6
0.8

1
1.2

Bluetooth Contacts Email Gallery Telephony

0
0.2
0.4
0.6
0.8

1
1.2

Bluetooth Contacts Email Gallery Telephony

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

6

Following is a summary of the conclusions reached from the above findings:

I. Precision was estimated and analyzed using various machine learning techniques by taking into account TABLE

II. The calculation of Precision using different machine learning models exhibited optimal performance across

diverse datasets. For instances, the Bluetooth dataset achieved superior results with the DT and NB Techniques,

contact dataset, which performed best using all classification models and Ensemble method, Email dataset, which

performed best using all classification models and Ensemble method, and Gallery dataset, which performed best

using all classification models.

III. By taking into account TABLE II, the recall computed across various machine learning models, demonstrated

optimal performance on distinct datasets. Specifically, the NB technique yielded the best results for the Bluetooth

dataset, while the Contacts dataset performed most effectively with DT, LR, RF, and Ensemble Technique. In

the case of the Email dataset, superior results were achieved with DT, RF, and Ensemble Technique, whereas the

Telephony dataset excelled across all models, except for LR and SVM.

4.1.2 Finding the correlation between the matrices

As for the results we obtained from 4.1.1 we can see that all the models have accurately predicted the defect which shows

that the data is biased or either imbalanced and predicts the defect with the slightest of the errors.

As we now know that the data, we are using maybe having an incline towards one of the specific groups so we will now

find the dependencies or the relation between the metrices.

We have visualized the relation between the matrices using scatter plots. The Visualization has taken place in between the

following attributes:

1) Defect-Count vs Total Number of changes

2)The count of insertions vs Total Number of changes

3)Number of deletions vs Total number of changes

4)Defect-Count vs Number of Deletions

5)Defect-Count vs Number of Insertions

The visualizations are as follows:

1) Defect-Count vs Total Number of changes

Fig. 7. Scatter plot showing the relation between the Defect Count and the Total Number of changes for Gallery

version 4.2 dataset

Fig. 8. Scatter plot showing the relation between the Defect Count and the Total Number of changes for Gallery

version 3.1 dataset

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

7

Fig. 9. Scatter plot showing the relation between the Defect Count and the Total Number of changes for email

dataset

Fig. 10. Scatter plot showing the relation between the Defect Count and the Total Number of changes for contact

dataset

I. The relationship between the number of changes and the occurrence of defects is not strictly proportional.

While there is an initial trend of increasing defects with the number of changes, this trend does not persist

beyond a certain point, typically around an average of 1000 changes.

II. After reaching this threshold, the number of defects remains relatively constant, indicating that additional

changes beyond this level do not lead to a significant increase in defects. This suggests that the correlation

between the two variables is not direct and may be influenced by additional factors or attributes. [Fig.7]

[Fig.8] [Fig.9] [Fig.10]

III. Further investigation into these contributing factors is needed to better understand the dynamics of defect

occurrence in relation to changes.

2) Number of insertions vs Total Number of changes

Fig. 11. Graph showing the association between the number of insertions and the Total Number of changes for

Gallery version 4.2 dataset

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

8

Fig. 12. Scatter plot showing the association between the number of insertions and the Total Number of changes

for Gallery version 3.1 dataset

Fig.13. Scatter plot having the association between the number of deletions and the total number of changes

Fig. 14. Scatter plot showing the association between the number of insertions and the Total Number of changes

email dataset

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

9

Fig. 15. Scatter plot showing the association between the number of insertions and the Total Number of changes

contacts dataset

I. Based on the presented findings, it is evident that an increase in the number of insertions does not result in

a notable escalation in the software's modification rate. Consequently, it can be concluded that the frequency

of changes remains unaffected by the quantity of insertions made. [Fig.11] [Fig.12] [Fig.13] [Fig.14]

3) Number of deletions vs Total number of changes

Fig. 16. Scatter plot showing the association between the number of deletions and the Total Number of changes

for gallery version 4.2 dataset

Fig. 17. Scatter plot showing the association between the number of deletions and the Total Number of changes

for gallery version 3.1 dataset

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

10

Fig. 18. Scatter plot showing the association between the number of deletions and the Total Number of changes

for email dataset

Fig. 19. Scatter plot showing the association between the number of deletions and the Total Number of changes

for contacts dataset

I. From the above findings, it is evident that an increase in the number of deletions leads to a rise in the

software modification rate. Consequently, it can be concluded that the frequency of changes is affected by

the number of deletions happening in the software. [Fig.16] [Fig. 17] [Fig.18] [Fig.19]

4) Defect-Count vs Number of Deletions

Fig. 20. Scatter plot showing the association between Defect-count and the Total Number of deletions for gallery

version 4.2 dataset

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

11

Fig. 21. Scatter plot showing the association between Defect-count and the Total Number of deletions for gallery

version 3.1 dataset

Fig. 22. Scatter plot showing the association between Defect-count and the Total Number of deletions for email

dataset

Fig. 23. Scatter plot showing the association between Defect-count and the Total Number of deletions for contacts

dataset

I. Based on the presented findings, we can observe that the even after increasing the count of deletions does

not surpass an average of 30 defects. Hence it can be concluded that the increase in the number of

deletions does not escalates the number of defects in the software design. [Fig.20] [Fig.21] [Fig.22]

[Fig.23]

5) Defect-Count vs Number of Insertions

Fig. 24. Scatter plot showing the association between Defect-count and the Total Number of insertions for gallery

version 4.2 dataset

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

12

Fig. 25. Scatter plot showing the association between Defect-count and the Total Number of insertions for gallery

version 3.1 dataset

Fig. 26. Scatter plot showing the association between Defect-count and the Total Number of insertions for email

dataset

Fig. 27. Scatter plot showing the association between Defect-count and the Total Number of insertions for

contacts dataset

I. The relationship between the number of changes and the occurrence of defects in software is complex and

not strictly proportional. While there is an initial trend of increasing defects with the number of changes,

this trend plateaus after a certain point, typically around an average of 1000 changes.

II. Beyond this threshold, the number of defects remains relatively constant, suggesting that additional changes

do not significantly impact defect occurrence.

III. Moreover, the statements indicate that the frequency of changes is not significantly influenced by the number

of insertions or deletions in the software.

IV. It is evident from the visualization that defect occurrence is not directly correlated with the number of

modifications and may be influenced by additional factors or attributes that require further investigation.

[Fig.24] [Fig.25] [Fig.26] [Fig.27]

V. CONCLUSION

Using the Ensemble technique, we were able to provide useful results for future research. The results indicate that applying

the Ensemble Technique, the metrics provided over 100% accuracy, indicating that our data is either biased or imbalanced.

For further investigation the relationship between the number of changes and the occurrence of defects in software were

compared which were found to be complex and not strictly proportional. While there is an initial trend of increasing

defects with the number of changes, this trend plateaus after a certain point, typically around an average of 1000 changes

(according to the software dataset taken in consideration which can be different for different software). Beyond this

threshold, the number of defects remains relatively constant, suggesting that additional changes do not significantly

MAIT Journal of Science Technology, Vol 1, No. 1, December, 2024

13

impact defect occurrence. Moreover, the statements indicate that the frequency of changes is not significantly influenced

by the number of insertions or deletions in the software. It is evident that the occurrence of defects is not directly correlated

with the number of modifications and may be influenced by additional factors or attributes that require further

investigation.

Our research used different prediction techniques for our studies, but we found some issues with our data accuracy,

possibly due to bias. When looking at how software changes relate to defects, we noticed that defects increased with more

changes, but only up to the threshold the defect occurrence stayed constant. Interestingly, the number of defects wasn't

influenced by the new addition or removal of the software components. This complexity suggests there are other factors

affecting the number of defects such as the change in the functionality of the software which can be further be taken in

consideration while using different techniques.

VI. FUTURE SCOPE

There is room for more learning because the dataset used for the article was biased and unbalanced. For improved

outcomes, we can also use the transfer learning technique. The future scope may also include studying about different

metrices available in the dataset for evaluation which play a role in shaping defect dynamics, contributing to a more

comprehensive understanding of software development challenges and solutions.

VII. REFERENCES

[1] Malhotra, R., & Khurana, A. (2017). Analysis of evolutionary algorithms to improve software defect prediction.

2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future

Directions) (ICRITO).

[2] Ruchika Malhotra, “A systematic review of machine learning techniques for software fault prediction,” Appl.

Soft Computing, vol. 27, pp. 504-518, 2015.

[3] Matloob, F., Ghazal, T. M., Taleb, N., Aftab, S., Ahmad, M., Khan, M. A., … Soomro, T. R. (2021). Software

Defect Prediction Using Ensemble Learning: A Systematic Literature Review. IEEE Access, 9, 98754–98771.

[4] Song, Q., Guo, Y., & Shepperd, M. (2018). A Comprehensive Investigation of the Role of Imbalanced Learning

for Software Defect Prediction. IEEE Transactions on Software Engineering, 1–1.

[5] A. B. Binkley and S. R. Schach, "Validation of the coupling dependency metric as a predictor of run-time failures

and maintenance measures," Proceedings of the 20th International Conference on Software Engineering, Kyoto,

Japan, 1998, pp. 452-455, doi: 10.1109/ICSE.1998.671604.

[6] S. R. Chidamber, D. P. Darcy and C. F. Kemerer, "Managerial use of metrics for object-oriented software: an

exploratory analysis," in IEEE Transactions on Software Engineering, vol. 24, no. 8, pp. 629-639, Aug. 1998, doi:

10.1109/32.707698.

[7] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object-oriented design," in IEEE Transactions on

Software Engineering, vol. 20, no. 6, pp. 476-493, June 1994, doi: 10.1109/32.295895.

[8] Thota, M.K., Shajin, F.H., Rajesh, P. 2020. Survey on software defect prediction techniques. International Journal

of Applied Science and Engineering, 17, 331–344.

[9] Rathore, Santosh S., and Sandeep Kumar. "An empirical study of ensemble techniques for software fault

prediction." Applied Intelligence 51 (2021): 3615-3644.

[10] Goyal, Somya. "Handling class-imbalance with KNN (neighborhood) under-sampling for software defect

prediction." Artificial Intelligence Review 55.3 (2022): 2023-2064.

