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Abstract: Software defect prediction proactively highlights critically vulnerable elements for a software system. Recent 

attempts in this domain have tried various machine learning techniques to automate and improve software defect 

prediction. It has been observed that recent research focusses on specific types of software and hence the solution is not 

suitable for all kind of software products. This paper proposes a generic approach based on Logistic Regression, Decision 

Trees, Random Forests, Naïve Bayes, Support Vector Machine for software defect prediction. Proposed approach is 

applicable on all type of software products and the results shows defect occurrence are not directly correlated with the 

quantity of modifications. 
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I. INTRODUCTION 

 

The need for producing affordable, maintainable software without sacrificing quality has increased due to the software 

systems' growing dependence. The likelihood of the software having a flaw is therefore very high. If errors are identified 

later in the software development process, the associated costs for their prompt resolution significantly increases. Software 

prediction models can be applied to initial phases of the software development life cycles. Additionally, utilizing them 

cuts down on project costs, time, and effort spent on testing and maintenance, which boosts the software's quality. We can 

work to strengthen the software's weaker components by identifying the defective portions of those components. Thus, it 

is possible to create high-quality software with inexpensive development and maintenance costs. 

Researchers have developed models that can predict these issues precisely and rapidly. These methods include the use of 

cutting-edge techniques like machine learning and data analysis. One of the efficient methods in this area may be ensemble 

techniques. They function by merging the results of various models, which increases their accuracy and dependability. 

It's similar to consulting with several experts before making a decision. This study focuses on investigating how ensemble 

techniques might be applied to improve software defect prediction. By doing this, we intend to raise the standard of 

software, lessen the effort required to address problems, and enhance the functionality of software systems as a whole. 

This research paper's major goal is to examine how ensemble techniques can be used to forecast software flaws and to 

comprehend the advantages they have over more conventional single-model methods. We studied their attributes 

individually. The following are the objectives of the study:  

1. Review and analyze the available investigation on ensemble strategies for predicting software defects, including 

their methodologies, algorithms, and performance measures. 

2. To increase the precision and dependability of predictions, propose and create a defect prediction framework that 

integrates various base models, such as decision trees, support vector machines, or neural networks. 

3. Run thorough tests and assessments on standard datasets to compare ensemble techniques' performance to that 

of individual models and other cutting-edge fault prediction techniques. 

4. Highlight the strengths, weaknesses, and practical consequences of employing ensemble approaches for software 

defect prediction as you analyze and interpret the data. 

5. After analyzing the weaknesses and the faults that were found while ensemble technique, we can now correct 

them by studying the correlation between the attributes and how they are dependable on each other. 

The outcomes will aid the awaited testers in identifying the most effective evolutionary algorithm. We examined and 

inspected the outcomes of five data vaults using six different machine learning models. We further correlated the attributes 

individually and saw their dependencies and how they affect the defect in the software. 

The information in the paper is arranged as follows: Section 2 of the linked effort contains investigations and related 

literatures. The proposed algorithm that will be used is described in Section 3 along with the calculated experimental 

findings. In Section 4, the findings were calculated, analyzed and drawn. The summary of the work done in the study is 

presented in Section 5. In section 6 we discussed the future scope of the research. 
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II. LITERATURE REVIEW 

Software metrics are essential for managing projects, especially when dealing with new technologies like object-oriented 

design. There are some studies that introduce a set of metrics tailored for object-oriented systems [6][7], grounded in 

measurement theory and informed by experienced developers. The suggested metrices undergo a formal evaluation based 

on predefined criteria.  

As object-oriented methods gain popularity in software development, researchers are working on metrics to develop new 

models and improve the old practices. An analysis of metrics by Chidamber and Kemerer [7] shows their usefulness for 

managers in industries. Empirical data supports these metrics, underscoring their significant impact on the ingenuity, 

modify effort, and creation effort in object-oriented systems. 

The coupling dependency metric (CDM) [5] proves successful in design quality. When applied to case studies involving 

COBOL, C, C++, and Java systems, CDM outperforms other metrics in anticipating run-time failures and gauging 

maintenance requirements. This suggests that coupling metrics, like CDM, can reliably predict interaction levels in 

software products. 

AUC, Accuracy, Precision, Recall and Mean are just a few of the different metrics that have been employed in numerous 

studies to predict the presence of faulty classes in software systems. These performance measures evaluate the connection 

between object-oriented metrics and flawed classes using statistical methods and classification algorithms. Observers 

have employed various methods, including Logistic Regression (LR), Naïve Bayes, Random Forest, Decision Trees, 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), Bayesian approaches, and Artificial Immune 

Recognition System [(1)-(3)], to develop predictive models and evaluate their efficacy.    

In study [3], the object-oriented metrics is employed in the Mozilla dataset in conjunction with LR gave good results in 

predicting defective classes. In other study, Linear Regression was compared with three machine learning methods (Naive 

Bayes, and Random Forest) to categorize object-oriented metrics based on the severity of defects. The investigation 

showed that models created for high severity levels had reduced prediction accuracy, and ML approach performance 

metrics were generally low. 

Other research [2] evaluated defect prediction models using various datasets, including NASA KC1 and Java Telecom, 

employing logistic regression, decision trees, ANN, SVM, and Multi Objective PSO approaches. The results highlighted 

the potential of neural networks and Bayesian methods by demonstrating improved performance with various models and 

strategies. Additionally, it was shown that decision trees (C4.5) produced greater accuracy when decision tree approaches 

were used together with neural networks, logistic regression, and SVM. 

Another research [1] assessed datasets utilizing machine learning algorithms and 10-fold cross-validation methods. These 

studies demonstrate the efficacy of various methods and models in this field and jointly advance understanding of software 

fault prediction. 

Software metrics, crucial for project management, are being developed for object-oriented systems, evaluated against 

established criteria. Object-oriented methods are gaining popularity, with metrics by Chidamber and Kemerer proving 

useful for managers and impacting productivity in empirical studies. The Coupling Dependency Metric (CDM) 

successfully predicts run-time failures in diverse systems, indicating its reliability in assessing interaction levels.  

 

III. METHOD 

3.1 Research Question for Data 

RQ1: What are the machine learning model does SDP uses? 

Despite the fact that there are numerous machine learning algorithms, five are chosen for this paper: SVM, NB, DT, LR, 

and RF. 

RQ2: What data sources are employed for SDP? 

We employed five different Android software application packages in this paper: Telephony, Gallery, Email, Contacts, 

and Bluetooth. 

RQ3: What performance metrices are utilized in SDP? 

In this research, we employ diverse object-oriented measures, encompassing Tang et al. measurements, Chidamber & 

Kemerer indicators, Henderson Sellers indicators, Martin's indicators, and the QMOOD indicator suite. Subsequently, 

these measures are utilized as features, and we undertake a reduction process for optimization purposes. 

RQ4: How can the effectiveness of evolutionary approaches be evaluated using machine learning models?  

 

 

 

 

 

 

 

 

 

Fig.1: Working of Ensemble technique 
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Using the Ensemble approach, we validated the results in this work (As shown in Fig1 above). 

 

RQ5: Are there any additional models or techniques used to find the software defect? 

Yes, there is one more technique that is by using the dependencies of different attributes from the dataset to visualize how 

they affect the change in the software and hence create a defect. 

3.2.1 Defect prediction (Algorithms) 

The actions taken to apply the algorithm to the dataset for Android are as follows: 

1. Collect data sets from Android software archives. 

2. Calculate all classification techniques' precision, Recall, Accuracy, and F-1 scores using all available features. 

3. The scores for Precision, Recall, F-1, and Accuracy obtained from various classification techniques are included 

in TABLE l, TABLE ll, TABLE lll, and TABLE lV, along with a comparison between them and the evolutionary 

algorithm Ensemble Technique. The data from TABLE I and II are represented by the precision graph in Fig. 1. 

4. Repetition of step 3 is required for the remaining Android datasets. 

5. Obtain the ensemble technique's precision, accuracy, F-1 score, and recall values. 

6. Compare all the values using graphs and get the best fit model. 

3.2.1 Defect prediction (Correlation between different attributes) (The method is explained in Fig.2 given below) 

The description of the method shown in Fig.2 is explained as follows: 

1. To propose a general method, we perform various visualizing techniques amongst the various attributes which 

does not depend on the type of software. 

2. We take in consideration the following attributes: 

i. Number defects 

ii. Number of changes 

iii. Number of Insertions 

iv. Number of Deletions 

v. Defect count 

3. Now investigating the influence of the number of changes on the defect count to find the correlation between 

them and hence predicting the output on this basis. 

4. Further investigating the attributes which might have influenced the number of changes to decrease and increase 

in the software.  

 

 

 

 

 

 

 

 

 

 

Fig.2: Working for the technique selecting special features to find the reasons for the defect in the software 

 

IV. COMPARE THE RESULTS 

4.1.1 Defect Prediction using ensemble technique 

We used the ensemble technique to validate the findings. 

Experimental Findings: 

Precision is calculated as the effectiveness of all datasets for classification procedures in TABLE I. The determined Recall 

value for each type of dataset is shown in TABLE II. The F-1 scores for each dataset are calculated in TABLE III using 

various approaches. Accuracy is determined for each dataset in TABLE IV.  

Figure 1 displays a graph generated from TABLE I for each of the created models. The table's investigation led us to the 

following conclusions: 

I. In comparison to standalone classification models, RF, DT, SVM, and NB yielded the most significant 

outcomes. The utilization of ensemble techniques is found to enhance precision.  

II. It also demonstrates that the model can produce the best results when employing the voting classifier 

Ensemble. 
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Graphs for each model are taken from TABLE II shown in Fig. 2. Following a review of the table, we draw the following 

conclusions: 

I. When compared to classification models alone, recall performed best for DT, RF, and NB. It is concluded 

that precision can be increased by employing the ensemble technique.   

 

Here is the plot for each model using TABLE III shown in Fig. 3. Following a review of the table, we draw the following 

conclusions: 

I. Compared to conventional classification models, the F-1 score produced the greatest results for DT, RF, and 

LR. It is concluded that precision can be increased by employing the ensemble technique.  

A graph plotted using TABLE IV for all created models is shown in Fig. 4. Following a review of the table, we draw the 

following conclusions: 

I. When compared to traditional classification models, accuracy produced the greatest results with DT, RF, 

and NB. It is concluded that precision can be increased by employing the ensemble technique. 

 

TABLE I: Precision of Datasets using Ensemble Techniques and Classification  

 

 

 

 

 

 

 

 

 

TABLE II: Recall Value of Datasets using Classification and Ensemble Techniques 

 

 

 

 

 

 

 

 

 

TABLE III: F-1 scores of Datasets using   Classification and Ensemble Techniques 

 

 

 

 

 

 

 

TABLE IV: Accuracy of Datasets using   Classification and Ensemble Techniques 
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Fig. 3. Graph for computed Precision as performance measures 

 

 
Fig. 4. Graph for computed Recall as performance measures 

 
Fig. 5. Graph for calculated F-1 score as performance measures 

 
Fig. 6. Graph for calculated Accuracy as performance measures 
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Following is a summary of the conclusions reached from the above findings: 

I. Precision was estimated and analyzed using various machine learning techniques by taking into account TABLE  

II. The calculation of Precision using different machine learning models exhibited optimal performance across 

diverse datasets. For instances, the Bluetooth dataset achieved superior results with the DT and NB Techniques, 

contact dataset, which performed best using all classification models and Ensemble method, Email dataset, which 

performed best using all classification models and Ensemble method, and Gallery dataset, which performed best 

using all classification models. 

III. By taking into account TABLE II, the recall computed across various machine learning models, demonstrated 

optimal performance on distinct datasets. Specifically, the NB technique yielded the best results for the Bluetooth 

dataset, while the Contacts dataset performed most effectively with DT, LR, RF, and Ensemble Technique. In 

the case of the Email dataset, superior results were achieved with DT, RF, and Ensemble Technique, whereas the 

Telephony dataset excelled across all models, except for LR and SVM. 

4.1.2 Finding the correlation between the matrices 

As for the results we obtained from 4.1.1 we can see that all the models have accurately predicted the defect which shows 

that the data is biased or either imbalanced and predicts the defect with the slightest of the errors. 

As we now know that the data, we are using maybe having an incline towards one of the specific groups so we will now 

find the dependencies or the relation between the metrices. 

We have visualized the relation between the matrices using scatter plots. The Visualization has taken place in between the 

following attributes: 

1) Defect-Count vs Total Number of changes 

2)The count of insertions vs Total Number of changes 

3)Number of deletions vs Total number of changes 

4)Defect-Count vs Number of Deletions 

5)Defect-Count vs Number of Insertions    

 

The visualizations are as follows: 

1) Defect-Count vs Total Number of changes 

 

 
Fig. 7. Scatter plot showing the relation between the Defect Count and the Total Number of changes for Gallery 

version 4.2 dataset 

 
Fig. 8. Scatter plot showing the relation between the Defect Count and the Total Number of changes for Gallery 

version 3.1 dataset 
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Fig. 9. Scatter plot showing the relation between the Defect Count and the Total Number of changes for email 

dataset 

 
Fig. 10. Scatter plot showing the relation between the Defect Count and the Total Number of changes for contact 

dataset 

 

I. The relationship between the number of changes and the occurrence of defects is not strictly proportional. 

While there is an initial trend of increasing defects with the number of changes, this trend does not persist 

beyond a certain point, typically around an average of 1000 changes.  

II. After reaching this threshold, the number of defects remains relatively constant, indicating that additional 

changes beyond this level do not lead to a significant increase in defects. This suggests that the correlation 

between the two variables is not direct and may be influenced by additional factors or attributes. [Fig.7] 

[Fig.8] [Fig.9] [Fig.10]  

III. Further investigation into these contributing factors is needed to better understand the dynamics of defect 

occurrence in relation to changes. 

 

2) Number of insertions vs Total Number of changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Graph showing the association between the number of insertions and the Total Number of changes for 

Gallery version 4.2 dataset 
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Fig. 12. Scatter plot showing the association between the number of insertions and the Total Number of changes 

for Gallery version 3.1 dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13. Scatter plot having the association between the number of deletions and the total number of changes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Scatter plot showing the association between the number of insertions and the Total Number of changes 

email dataset 
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Fig. 15. Scatter plot showing the association between the number of insertions and the Total Number of changes 

contacts dataset 

I. Based on the presented findings, it is evident that an increase in the number of insertions does not result in 

a notable escalation in the software's modification rate. Consequently, it can be concluded that the frequency 

of changes remains unaffected by the quantity of insertions made. [Fig.11] [Fig.12] [Fig.13] [Fig.14] 

 

3) Number of deletions vs Total number of changes 

 
Fig. 16. Scatter plot showing the association between the number of deletions and the Total Number of changes 

for gallery version 4.2 dataset 

 

 

 

 

 
Fig. 17. Scatter plot showing the association between the number of deletions and the Total Number of changes 

for gallery version 3.1 dataset 
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Fig. 18. Scatter plot showing the association between the number of deletions and the Total Number of changes 

for email dataset 

 
Fig. 19. Scatter plot showing the association between the number of deletions and the Total Number of changes 

for contacts dataset 

 

I. From the above findings, it is evident that an increase in the number of deletions leads to a rise in the 

software modification rate. Consequently, it can be concluded that the frequency of changes is affected by 

the number of deletions happening in the software. [Fig.16] [Fig. 17] [Fig.18] [Fig.19] 

 

 

4) Defect-Count vs Number of Deletions 

 
Fig. 20. Scatter plot showing the association between Defect-count and the Total Number of deletions for gallery 

version 4.2 dataset 
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Fig. 21. Scatter plot showing the association between Defect-count and the Total Number of deletions for gallery 

version 3.1 dataset 

 

 
Fig. 22. Scatter plot showing the association between Defect-count and the Total Number of deletions for email 

dataset 

 

 

 

 

 
Fig. 23. Scatter plot showing the association between Defect-count and the Total Number of deletions for contacts 

dataset 

 

I. Based on the presented findings, we can observe that the even after increasing the count of deletions does 

not surpass an average of 30 defects. Hence it can be concluded that the increase in the number of 

deletions does not escalates the number of defects in the software design. [Fig.20] [Fig.21] [Fig.22] 

[Fig.23] 

5) Defect-Count vs Number of Insertions    

 

 
Fig. 24. Scatter plot showing the association between Defect-count and the Total Number of insertions for gallery 

version 4.2 dataset 
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Fig. 25. Scatter plot showing the association between Defect-count and the Total Number of insertions for gallery 

version 3.1 dataset 

 
Fig. 26. Scatter plot showing the association between Defect-count and the Total Number of insertions for email 

dataset 

 
Fig. 27. Scatter plot showing the association between Defect-count and the Total Number of insertions for 

contacts dataset 

I. The relationship between the number of changes and the occurrence of defects in software is complex and 

not strictly proportional. While there is an initial trend of increasing defects with the number of changes, 

this trend plateaus after a certain point, typically around an average of 1000 changes.  

II. Beyond this threshold, the number of defects remains relatively constant, suggesting that additional changes 

do not significantly impact defect occurrence. 

III. Moreover, the statements indicate that the frequency of changes is not significantly influenced by the number 

of insertions or deletions in the software.  

IV. It is evident from the visualization that defect occurrence is not directly correlated with the number of 

modifications and may be influenced by additional factors or attributes that require further investigation. 

[Fig.24] [Fig.25] [Fig.26] [Fig.27] 

 

V. CONCLUSION 

Using the Ensemble technique, we were able to provide useful results for future research. The results indicate that applying 

the Ensemble Technique, the metrics provided over 100% accuracy, indicating that our data is either biased or imbalanced.  

For further investigation the relationship between the number of changes and the occurrence of defects in software were 

compared which were found to be complex and not strictly proportional. While there is an initial trend of increasing 

defects with the number of changes, this trend plateaus after a certain point, typically around an average of 1000 changes 

(according to the software dataset taken in consideration which can be different for different software). Beyond this 

threshold, the number of defects remains relatively constant, suggesting that additional changes do not significantly 
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impact defect occurrence. Moreover, the statements indicate that the frequency of changes is not significantly influenced 

by the number of insertions or deletions in the software. It is evident that the occurrence of defects is not directly correlated 

with the number of modifications and may be influenced by additional factors or attributes that require further 

investigation. 

Our research used different prediction techniques for our studies, but we found some issues with our data accuracy, 

possibly due to bias. When looking at how software changes relate to defects, we noticed that defects increased with more 

changes, but only up to the threshold the defect occurrence stayed constant. Interestingly, the number of defects wasn't 

influenced by the new addition or removal of the software components. This complexity suggests there are other factors 

affecting the number of defects such as the change in the functionality of the software which can be further be taken in 

consideration while using different techniques. 

 

VI.  FUTURE SCOPE 

There is room for more learning because the dataset used for the article was biased and unbalanced. For improved 

outcomes, we can also use the transfer learning technique. The future scope may also include studying about different 

metrices available in the dataset for evaluation which play a role in shaping defect dynamics, contributing to a more 

comprehensive understanding of software development challenges and solutions. 
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