In today’s world, quest for energy storage has gained significant momentum and many innovative energy storage solutions have turned up due to global efforts in power generation. One of the possible energy storage solutions is the use of supercapacitors that has turned out to be a significant development owing to its high charging-discharging speed, enhanced power density with long-term cycling stability when compared to customary batteries.
Monika Aggarwal, Basant Kumar, Samina Husain
Department of Physics, Maharaja Agrasen Institute of Technology (affiliated to GGSIPU), New Delhi, India
Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi, India
Corresponding Author: E-mail:
Abstract: In today’s world, quest for energy storage has gained significant momentum and many innovative energy storage solutions have turned up due to global efforts in power generation. One of the possible energy storage solutions is the use of supercapacitors that has turned out to be a significant development owing to its high charging-discharging speed, enhanced power density with long-term cycling stability when compared to customary batteries. The current review focusses on the use of one of the carbon materials viz. CNTs as supercapacitor electrode material, another refined material that can be used in making sustainable and highly efficient energy storage devices. The use of CNTs increases the surface area and the electrodes show high electrical conductivity.
Keywords: Supercapacitors, Electrodes, CNTs
REFERENCES
- Vangari, M., Pryor T. and Li Jiang, L. (2013) Supercapacitors: Review of Materials and Fabrication Methods, Energy Eng., 139(2), pp. 72-79
- Winter, M. and Brodd, R. J. (2004) What are Batteries, Fuel Cells and Supercapacitors? Rev., 104(10), pp. 4245-4270.
- Ran, F., Yang, X. and Shao, L. (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors, Compos. Hybrid Mater. 1, pp. 32-55.
- Ohno, S., Koerver, R., Dewald, G., Rosenbach, C., Titscher, P., Steckermeier, D., Kwade, A., Janek, J. and Zeier, W. G. (2019) Observation of Chemomechanical Failure and the Influence of Cutoff-Potentials In All-Solid State Li-S Batteries, Mater., 31(8), pp. 2930-2940.
- Sun, Y., Sills, R. B., Hu X., She, Z. W., Xiao, X., Xu, H., Luo, W., Jin, H., Xin, Y., Li, T., Zhang, Z., Zhou, J., Cai W., Huang, Y. and Cui, Y. (2015) A Bamboo-Inspired Nanostructure Design for Flexible, Foldable and Twistable Energy Storage Devices, Nano Lett., 15(6), pp. 3899–3906.
- Conway, B.E. (1999) Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer- Plenum, New York.
- Burke, A. (2000) Ultracapacitors: why, how, and where is the technology, Power Sources, 91(1), pp. 37–50.
- Kotz, R. and Carlen, M.J.E.A (2000) Principles and applications of electrochemical capacitors, Electrochimica Acta, 45(15-16), pp. 2483-2498.
- Arico, A.S. and Bruce, P. (2005) Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, 4, pp. 366-377.
- Chu, A. and Braatz, P. (2002) Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization, Power Sources, 112 (1), pp. 236–246.
- Chmiola, J. Yushin, G. Gogotsi, Y., Portet, C., Simon, P. and Taberna, P. (2006), Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, pp. 1760–1763.
- Halper, M.S. and Ellenbogen, J.C., (2006) Supercapacitors: A brief overview, The MITRE Corporation, McLean, Virginia, USA, pp.1-34.
- Kiamahalleh, M.V., Zein, S.H.S., Najafpour, G., Sata, S.A. and Buniran, S. (2012) Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials, Nano, 7 (2), 1230002.
- B́eguin, F. and Frackowiak, E. (2013) (Eds.), Supercapacitors: Materials, Systems, and Applications, Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
- Li, G., Ji, Y., Zuo, D., Xu, J., & Zhang, H. (2019) Carbon electrodes with double conductive networks for high-performance electrical double-layer capacitors. Advanced Composites and Hybrid Materials, 2, pp. 456-461.
- Choi, H. and Yoon, H. (2015) Nanostructured electrode materials for electrochemical capacitor applications, Nanomaterials, 5(2), pp. 906–936.
- Mohapatra, S., Acharya, A. and Roy, G.S. (2012) The role of nanomaterial for the design of supercapacitor, Am. J. Phys. Educ. 6, pp. 380–384.
- Sun, J., Huang Y., Sze Sea, Y. N., Xue, Q., Wang, Z., Zhu, M., Li, H., Tao, X., Zhi, C. and Hu, H. (2017) Recent progress of fiber-shaped asymmetric supercapacitors, Today Energy, 5, pp.1-14.
- Chen, S.M., Ramachandran, R. and Mani, V., Saraswathi, R. (2014) Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review, J. Electrochem Science, 9(8), pp. 4072–4085.
- Beidaghi, M. (2012) Design, Fabrication, and Evaluation of On-chip Micro-supercapacitors, PhD Thesis, Florida International University, Available from: https://digitalcommons.fiu.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1766&context=etd.
- Chen, T. and Dai, L. (2013) Carbon nanomaterials for high-performance supercapacitors, Today 16, pp. 272–280.
- Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., Wang, H., Dunn, B. and Kaner, R. B. (2018) Designs and Mechanisms of Asymmetric Supercapacitors, Rev., 118, 18, pp. 9233-9280.
- Choudhary, N., Li, C., Moore, J., Nagaiah, N., Zhai, L., Jung, Y., and Thomas, J. (2017) Asymmetric supercapacitor electrodes and devices, Advanced Materials, 29(21), 1605336.
- Yang, Z., Tian, J., Yin, Z., Cui, C., Qian, W., and Wei, F. (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon, 141, pp. 467-480.
- Pumera, M. and Iwai, H. (2009) Multicomponent Metallic Impurities and Their Influence upon the Electrochemistry of Carbon Nanotubes, Journal of Physical Chemistry C, 113(11), pp. 4401-5.
- Cui, C.J., Qian, W.Z., Yu Y.T., Kong, C.Y., Yu, B and Xiang, L. (2014) Highly Electroconductive Mesoporous Graphene Nanofibers and Their Capacitance Performance at 4 V. Journal of the American Chemical Society, 136(6), pp. 2256-9.
- Kaur, S., Ajayan, P.M. and Kane, R.S. (2006) Design and Characterization of Three-Dimensional Carbon Nanotube Foams, The Journal of Physical Chemistry B.,110(42), pp. 21377-80.
- Sha, J., Gao C., Lee, S-K., Li Y., Zhao, N. and Tour, J.M. (2016) Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates, ACS Nano.,10(1), pp. 1411-6.
- Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S. and H-M. (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials.,10, pp. 424-428.
- Liu, X., Chao, D., Su, D., Liu, S., Chen, L. and Chi, C. (2017) Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage, Nano Energy, 37, pp. 108-17.
- Tian, J., Cui, C., Zheng, C. and Qian, W. (2018) Mesoporous tubular graphene electrode for high performance supercapacitor, Chinese Chemical Letters., 29(4), pp. 599-602.
- Ega, S. P., Karri, S. N., and Srinivasan, P. (2022) Polyanilines from spent battery powder and activated carbon: Electrodes for asymmetric supercapacitor cell, Journal of Applied Polymer Science, 139(37), e52864.
- Habib, H., Wani, I. S., and Husain, S. (2023) High performance symmetric reduced graphene oxide/polyaniline/tellurium supercapacitor electrodes, Nanotechnology, 34(41), 415401.
- Wang, Q., Gao, H., Zhao, C., Yue, H., Gao, G., Yu, J., and Zhao, Y (2021) Covalent modified reduced graphene oxide: facile fabrication and high rate supercapacitor performances, Electrochimica Acta, 369, 137700.
- Zhang, Z., Xiao, F., Qian, L., Wang, S. and Liu, Y. (2014) Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors., Energy. Mater., Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1400064.
- Wei, W., Cui, X., Chen, W. and Ivey, D. (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes, Soc. Rev, 40, pp. 1697-1721.
- Hu, C., Chang, K., Lin, M. and Wu, Y. (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2for next generation supercapacitors, Lett., 6(12), pp. 2690-2695.
- Ghodbane, O., Pascal, J. and Favier, F. (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors, Appl. Mater. Inter., 1(5), pp. 1130-1139.
- Singh, G., Kumar, Y. and Husain, S. (2023) Fabrication of high energy density symmetric polyaniline/functionalized multiwalled carbon nanotubes supercapacitor device with swift charge transport in different electrolytic mediums, Journal of Energy Storage, 65, pp. 107328.
- Liang, W., and Zhitomirsky, I. (2021) MXene–carbon nanotube composite electrodes for high active mass asymmetric supercapacitors, Journal of Materials Chemistry A, 9(16), pp. 10335-10344.
- Mu, X., Du, J., Zhang, Y., Liang, Z., Wang, H., Huang, B., and Xie, E. (2017) Construction of hierarchical CNT/rGO-supported MnMoO4 nanosheets on Ni foam for high-performance aqueous hybrid supercapacitors, ACS applied materials & interfaces, 9(41), pp. 35775-35784.
- Zhang, R., Liao, Y., Ye, S., Zhu, Z., and Qian, J. (2018) Novel ternary nanocomposites of MWCNTs/PANI/MoS2: preparation, characterization and enhanced electrochemical capacitance, Royal Society open science, 5(1), 171365.
- Ryan, S., Browne, M. P., Zhussupbekova, A., Spurling, D., McKeown, L., Douglas-Henry, D., and Nicolosi, V. (2023). Single walled carbon nanotube functionalisation in printed supercapacitor devices and shielding effect of Tin (II) Oxide, Electrochimica Acta, 448, 142168.
- Tian J. et al. (2018) High-performance wearable supercapacitors based on PANI/N-CNT@CNT fiber with a designed hierarchical core-sheath structure, Mater. Chem. A, 9, pp. 20635-20644
- Yue, L., Zhang, S., Zhao, H., Wang, M., Mi, J., Feng, Y., and Wang, D. (2018) Microwave-assisted one-pot synthesis of Fe2O3 /CNTs composite as supercapacitor electrode materials, Journal of Alloys and Compounds, 765, pp. 1263–1266.
- Yang, L., Zheng W., Zhang P., Chen J., Tian W. B., Zhang Y. M., and Sun Z. M. (2018) MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes, Journal of Electroanalytical Chemistry, 830-831, pp. 1-6.
- Yue, L., Zhang, S., Zhao, H., Feng, Y., Wang, M., An, L., Zhang, X. and Mi, J. (2019) One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode, Solid State Ionics, 329, pp. 15–24.
- Li, H., Li, Z., Wu, Z., Sun, M., Han, S., Cai, C., Shen, W., Liu, X. and Fu, Y. (2019) Enhanced electrochemical performance of CuCo2S4/carbon nanotubes composite as electrode material for supercapacitors, Journal of Colloid and Interface Science, 549, pp. 105-113.
- Yesilyurt, E. I., Pionteck, J., Simon, F., and Voit, B. (2023) Fabrication of PANI/MWCNT supercapacitors based on a chitosan binder and aqueous electrolyte for enhanced energy storage, RSC Applied Polymers, 1(1), pp.97-110.